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The unsteady laminar compressible boundary-layer flow in the immediate 
vicinity of a two-dimensional stagnation point due to an incident stream whose 
velocity varies arbitrarily with time is considered. The governing partial 
differential equations, involving both time and the independent similarity 
variable, are transformed into new co-ordinates with finite ranges by means of a 
transformation which maps an infinite interval into a finite one. The resulting 
equations are solved by converting them into a matrix equation through the 
application of implicit finite-difference formulae. Computations have been 
carried out for two particular unsteady free-stream velocity distributions: 
(i) a constantly accelerating stream and (ii) a fluctuating stream. The results 
show that in the former case both the skin-friction and the heat-transfer para- 
meter increase steadily with time after a certain instant, while in the latter they 
oscillate, thus responding to the fluctuations in the free-stream velocity. 

1. Introduction 
Many current aerodynamic problems involve accelerated or decelerated rocket 

missiles, blades rotating in non-uniform air streams, unsteady nozzle flow or 
oscillating wings, etc. In order to determine the friction drag and the rate of heat 
transfer through the surface for such unsteady motions, the nature of time- 
dependent laminar compressible boundary-layer flow of a fluid past an obstacle 
must be investigated. Attempts to obtain practical solutions, exact or approxi- 
mate, to the complete set of boundary-layer equations resulting from' the intro- 
duction of time into the analysis lead to very great difficulties. Consequently, 
most of the investigations of unsteady laminar boundary layers have been con- 
cerned with either bodies of simple shape, specific time variations of the velocity 
in the undisturbed flow or both. For instance, Lighthill (1954) has considered the 
case of an arbitrary cylinder fixed in a stream which fluctuates in magnitude but 
not in direction. Nevertheless, Yang (1958,1959) has studied the development of 
the unsteady two-dimensional incompressible laminar boundary layer on an 
arbitrary cylinder fixed in a stream whose velocity varies arbitrarily with time by 
adopting an integral procedure. On the other hand, for compressible flows, only 
particular cases of this general problem have been considered (Moore 1951; 
Ostrach 1955; Moore & Ostrach 1956; Illingworth 1958; Gribben 1961, 1971), 

7 Present address: Aerodynamics Division, National Aeronautical Laboratory, Bangalore. 
36 F L M  70 



562 C. 8. Vimala and G. Nath 

through the use of integral methods or series expansion methods. Both methods 
have their own drawbacks. Series expansion methods are somewhat laborious to 
apply and require many terms for large times. Integral methods are only approxi- 
mate, not exact. 

However, for unsteady two-dimensional laminar compressible boundary- 
layer flows, a suitable similarity transformation can be used to  reduce the 
number of independent variables from three to two. The solutions of the resulting 
partial differential equations, involving only time and the independent similarity 
variable, are called semi-similar solutions. These semi-similar solutions may be 
obtained through the application of the finite-difference numerical technique. 
But, when finite-difference methods are employed for the numerical solution of 
problems concerned with regions of infinite extent in one or more directions, 
there are two main difficulties to be faced, viz. the satisfaction of the boundary 
conditions a t  infinity and the representation of an infinite interval with a finite 
number of grid points. 

Of the three approaches (Sills 1969) that are commonly used to overcome these 
difficulties, the one that is most suited for the application of finite-difference 
schemes is to map the infinite field into a finite one by introducing a co-ordinate 
transformation. Sills (1969) has presented three transformations which map one 
or both of the intervals (0 ,  co) and (-a, co) into finite intervals along with an 
illustration of their application to flow problems. The asymptotic nature of these 
transformations allows the straightforward application of the boundary condi- 
tions a t  infinity, at the same time concentrating the grid points in the desired 
region and eliminating the necessity of searching for the effective boundary- 
layer edge through additional iteration. Marvin & Sheaffer (1969) have used one 
of these transformations to  solve non-similar compressible boundary-layer 
equations including foreign-gas injection. El Assar (1 970) has treated the 
problem of the compressible laminar wake behind a thin flat plate by employing 
the above technique. 

The present paper deals with the unsteady laminar compressible boundary- 
layer flow in the immediate vicinity of a two-dimensional stagnation point, the 
unsteadiness arising from arbitrary variations in the velocity of the incident 
stream with time. The equations governing the flow are transformed into new 
co-ordinates with a finite domain using a transformation given by Sills (1969). 
They are then solved numerically by converting them into a matrix equation 
with the help of implicit finite-difference formulae. Computations have been 
carried out  for the flow past a cylinder for the following free-stream velocity 
distributions: (i) a stream moving with constant acceleration and (ii) a stream 
fluctuating about a steady mean. It may be noted that here the fluctuating-flow 
problem is solved as an initial-value problem starting with a steady solution and 
hence the solution is not the same as in other work (Lighthill 1954; Yang 1958; 
Gribben 1961, 197 1) where transient motions are assumed to have died away. 
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2. Basic equations 
The equations governing the unsteady two-dimensional laminar compressible 

boundary-layer flow of a fluid past an obstacle are the following: 

( 2 . 1 4  

(2.1 b )  

Here t is the time, x and y are curvilinear co-ordinates along and perpendicular to 
the boundary, u and v the corresponding velocity components, p ,  p, ,u and h the 
pressure, density, viscosity and specific enthalpy respectively and v the Prandtl 
number, supposed to be constant. The suffix e refers to free-stream values. 

The pertinent initial and boundary conditions are the following: 

4x5 y ,  0) = u&, y), v(x, Y, 0 )  = v&, Y ) ,  h(x, Y, 0 )  = hi@, $4); (2.2a) 
u(x,O, t )  = 0, 2)(5,0, t )  = TIw(%, t ) ,  h(z, 0, t )  = hw(x,t); (2.2b) 

(2.2C) 

The suffixes i and w are used to  denote values at  the initial time t = 0 and a t  the 
wall y = 0 respectively. The free-stream velocity u,, density pe and enthalpy he, 
which are all functions of x and tin general, obey the equations 

U ( X ,  ~ , t )  = ~ ~ ( 2 ,  t ) ,  h ( x , a ,  t )  = he(x, t ) .  

pe (2 - + u -  .ash;) = ( 2 + u e % ) .  

(2 .3a)  

(2.3b) 

( 2 . 3 ~ )  

Suppose that the fluid is a perfect gas and the external stream is homentropic. 
Also, assume for the sake of simplicity that the density-viscosity product pp is 
directly proportional to pwpw, and introduoe new variables $ and Y defined by 
(Moore 1951; Illingworth 1958; Gribben 1961, 1971) 

so that the equation of continuity ( 2 . 1 ~ )  is satisfied identically. Then the 
momentum and energy equations, (2.1 b)  and (2.1 c )  respectively, become, for 
small Mach numbers (in which case the dissipation term may be neglected), 

(2.5b) 

where ( 2 . 5 ~ )  
36-2 
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I t  is the aim of the present investigation to calculate the critica1 parameters of 
the laminar compressible boundary-layer flow in the vicinity of a blunt-nosed 
cylinder when the velocity of the upstream undisturbed flow varies arbitrarily 
with time. For two-dimensional stagnation-point flow, without loss of generality, 
the free-stream velocity distribution u, can be taken to be of the form (Yang 
1958) 

u, = C X $ ( t * ) ,  ( 2 . 6 ~ )  

where t* = ct; (2.6b) 

Cis a constant having dimensions (time)-’; $is an arbitrary function representing 
the nature of the unsteadiness in the external stream and has a continuous fist 
derivative for t* > 0. 

Applying the similarity transformation (Gribben 1971) 

(2.7) 1 7 = ( C / V W ) +  y ,  @ = (Cv,)%W*)f (7, t*), 

hlhe = d q ,  t * )  

to (2.5),  using (2.6) and introducing 

F = uIue = afla7, 
we obtain 

The transformed boundary conditions are 

a t  time t* .  1 F = O ,  g = g w  at q = O  

F - t l ,  g - t l  as 7 3 0 0  

(2.8) 

( 2 . 9 ~ )  

(2.9b) 

(2.10) 

Suppose that the flow under consideration is steady at fist and then changes to 
unsteady flow for t* > 0. Then the initial conditions for F(r, t*)  and g(q, t*)  at 
t* = 0 are given by the steady flow equations obtained by putting 

in (2 .9) .  

heat transfer to the surface. The equation defining the wall skin friction is 

+(t*) = 1, d + p *  = 0, a/at* = o (2.11) 

The quantities of chief physical interest are the skin friction and the rate of 

The rate of heat transfer from the wall to the fluid is 

(2.13) 

Thus (aF/ay), and (aglaq),, the velocity and enthalpy gradients at the surface, 
are the critical skin-friction and heat-transfer parameters of the flow. 
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3. Transformation to finite co-ordinates 
The system of simultaneous partial differential equations (2 .9 ) ,  which involves 

two independent variables x and t*, both varying from 0 to 00, is solvable for F 
and g with the use of implicit finite-difference formulae. In order to facilitate the 
application of finite-difference schemes, we transform the equations to a new 
system of co-ordinates wherein the indefinite limit of integration in r] is replaced 
by a definite limit. Employing the transformation 

6 = 1 -e-av,  ( 3 .1 )  

where a is a constant that can be used as a scaling factor to provide an optimum 
distribution at nodal points across the boundary layer, and letting 

Z = a ( l - t ) ,  (3 .2 )  

we arrive a t  the following set of equations for F and g: 

(3.3b) 

The initial conditions are 

while the boundary conditions are 

Here f is given by 

where 

for t* >/ 0. 
F = O ,  g = g w  at t = O  
F = l ,  g = 1  at f l=1  

-vw/(Cvw)+ for t* = ' 0. O") 

-w,/(Cvw)t$ for t* 
f w = {  

(3.5) 

(3 .7 )  

The solutions of the foregoing equations are useful for examining the velocity 
and enthalpy profiles at each instant t * .  Besides, they were helpful in the evalua- 
tion of the skin-friction and heat-transfer parameters, namely (aF/ay), and 
(aqlaq),, at time t* by means of the relations 

By finding (aF/ag), and (ag/at), a t  different times t*, the response of the laminar 
skin friction and heat transfer a t  the wall to the variations in the velocity of the 
oncoming stream with time can be studied for different types of unsteadiness in 
the free-stream velocity. 



566 C .  S .  Vimala and G .  Nath 

I I L* I t E  

FIGURE 1. Mesh-point diagrams for Crank-Nicholson scheme. 
(a )  Unsteady flow (t* > 0). ( b )  Steady flow (t* = 0). 

4. Method of solution 
A numerical solution of ( 3 . 3 )  subject to the initial conditions (3 .4)  and the 

boundary conditions (3.5) may be obtained by converting them into a set of 
implicit finite-difference equations of the Crank-Nicholson type and solving the 
ensuing tridiagonal matrix equations on a computer by making use of a suitable 
algorithm (Varga 1962; Marvin & Sheaffer 1969). The mesh-point diagram for the 
Crank-Nicholson scheme is shown in figure 1 ( a ) .  

Suppose that there are N nodal points in the ,$direction, so that ( N  - i) A,$ = I .  
Then the semi-similar boundary-layer equations (3 .3)  may be converted into a 
set of 2(N - 2 )  linear algebraic equations using the following type of finite- 
difference equations to approximate the unknowns and their derivatives: 

E" = HFn,m+Fn,m+d, F2 = 'n,mFn,m+l,  ( 4 . i a 7 b )  
aF/at* = (Fn,m+1-Fn,m)/At*, ( 4 . 1 ~ )  

'Flat = [~n+l,m-Fn-~,m+Fn+l,m+l-E"n-l,m+ll, (4.1 d)  

a2F/at2 = (2(W2)- '  [Fn+l., m - 2Fn, m + Fn-1, m + Fn+l, m + l -  W n ,  m+l + 4 - 1 ,  m + J .  
(4.1 e) 

The resulting equations can be conveniently written in the matrix form 

+ B,O, + C n ~ n + l  = D,, n = 2 , 3 ,  ..., N - 1, (4.2) 
where the vectors and the coefficient matrices are given by 

( 4 . 3 ~ ~  b )  

(4 .3e)  
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The matrix elements are given by the following equations: 

567 

The matrices An, B, and C, and the solution vectors Dn are considered known 
and are evaluated at  (n, m) or (n, m + 8 )  depending on the iteration, described 
subsequently. The system of equations (4.2) will be complete with the values of 
the dependent variables a t  n = 1,N (corresponding to the boundaries .5 = 0 , l  
respectively) specified by the equations 

Equations (4.2) together with the boundary conditions (4.6) form a set of 
linear algebraic equations which can be solved on a digital computer, provided 
that the profiles of the dependent variables at  an initial time, say t* = 0, are 
known. 

An algorithm that can be used to obtain the solution wn at a certain instant t* ,  
i.e. for a particular value of m, is (Varga 1962; Marvin & Sheaffer 1969) 

(4.7) 

(4.8) 

on = - E,W,+~+ J,, 1 Q n 6 N -  1, 

2 < n < N - 1 ,  
where E, = (Bn - A, Cn, 

Jn = (Bn- AnEn-d-l (Dn-An Jn-11, 

and (4.9) 

Knowing the values of the dependent variables and appropriate derivatives 
at m, corresponding to time t*, the dependent variables 0, at m + 1, which 
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corresponds to time t*+At*, can be computed by adopting the following pro- 
cedure. First, the values of the matrix elements All, Bll, etc., are evaluated using 
the known values of required variables at  m from (4.4) and (4.5). Next, with the 
help of (4.8) and (4.9) the En and J, based on the values of the variables at  m are 
calculated for all n between 1 and N ,  starting a t  the wall (n = 1) and proceeding 
to the boundary-layer edge (?z = N ) .  By substituting these values of En and J, 
in (4.7) and using the boundary conditions (4.9), the values of the dependent 
variables w, at m + l  are determined in the reverse order, i.e., starting from 
n = N .  New values for f at  m + 1 are found on using (3.6).  The derivatives off are 
redetermined and the new values for f and w, thus obtained are averaged over 
the interval with the corresponding values at  m to form new matrix elements a t  
(n, m + i) and the process of improving on at m + 1 is repeated till convergence 
is achieved. The criterion for whether convergence has been achieved or not is 
whether both 

are less than 0.0001 or not, the superscripts v +  1 and v denoting the values for 
the present and previous iterations. It may be noted that only the dependent 
terms of the solution without subscripts n,m are to be updated during the 
iteration process. The final values ofw, are again used to obtain on at m + 2 and 
so on. 

However, to start the solutions, the values of on and f at the initial time t* = 0 
have to be calculated by solving the steady equations (3.4) subject to the same 
boundary conditions (3.5) by a method analogous to that described above. 
Equations (3.4) can also be transformed into a matrix equation of the form (4.2), 
by making use of the grid system shown in figure 1 (b )  and the following type of 
finite-difference approximation: 

F = F,, E2 = FL+'F;, 

(4.10) 

f (aF/at;) = f:(aF/ac), f (aglaf;) = f?w9/ac).) 
The vectors and the coefficient matrices are given by 

(4.11 a,  b )  

where the matrix element.. ,, are 

All = XZ2/(4tY - CfL - xa) Zl24k-J 

A22 = Xz2/~(4E)2 - [fl- x ~ / o ]  2/24f;, 

(4.12a) 

B11 = -2~2~/(4g)~-I"flZ, Cll = - A , 1 + 2 ~ 2 2 / ( A t ) 2 ,  (4 .12b ,~ )  

(4.12d) 

B22 = - ~ X Z ~ / O - ( A ~ ) ~ ,  C2, = -Az2  + ~ x Z ~ / V ( A < ) ~ .  (4.12e,f) 

The boundary conditions and the solution algorithm remain unchanged. 
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0 1 2 3 4 

4 
FIGURE 2.  (a )  Velocity and ( b )  enthalpy profiles for t* = 0, 2 and 4. 

q5(t*) = 1 +t* for t* 0. -, 9 uI - - 0;  ---, gU, = 0.5. 

Assuming linear profiles for the dependent variables across the boundary layer 
to evaluate the matrix elements from (4.12), new values for the dependent 
variables are obtained from (4.7)-(4.9) and (3.6). The new values thus obtained 
are used again in (4.12) to form new matrix elements for the next iteration and 
so on. The solution is iterated until the ratios 

both differ from unity only by a quantity less than 0.0001. The final values of on 
and f at t* = 0 are later used to determine w, and f for t* > 0 by the method 
outlined above. 

5. Results and discussion 
The method of solution described in the previous section has been programmed 

in Fortran IV and solutions have been obtained on an IBM 360 computer for two 
different unsteady free-stream velocity distributions characterized by 

$(t*) = 1 +t* and $(t*) = 1 +€sin (w*t* )  
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0 1 2 

t* 

3 

FIGURE 3. Variation of (C3F/@), and (ag/@), with t*. &t*) = l + t *  for t* 2 0. 

(where 6 is a small constant and w* is the frequency parameter). Both the skin- 
friction and heat-transfer parameter (M’/ar), and (ag/ar), have been evaluated 
by using (3.8). Computations have been carried out with x = 1, cr = 0.72, 
CL = 0.5, A( = 0.05, At* = 0.05 or 0.1, fw = 0 and g, = 0 or 0.5. The steady-state 
values thus obtained compare well with the values obtained by considering 
steady flow and employing quasi-linearization (Libby 1967) or any other suitable 
met,hod. 

(i) #(t*) = 1 +t* 
This is the case of a cylinder fixed in a stream flowing initially with a constant 
velocity and then, a t  a certain instant t* = 0,  starting to flow with a constant 
acceleration. The velocity and enthalpy profiles for gw = 0 or 0.5 at different 
times t* = 0,  2 and 4 are shown in figures 2(a)  and ( b )  respectively. Figure 3 
depicts the variation of the skin-friction and heat-transfer parameters with time. 
It may be seen that, in accelerating flows, after a certain time both the skin 
friction and the heat transfer increase steadily with time. 
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3 
-0.10 

0 1 2 

t* 

FIGURE 4. Variation of [ ( a B ’ / a ~ ) ~ .  - (i3B’/t3?)&jw and [(ag/8T)t. - (ag/i3g)t.=o]w with t*. 
. o... = 0.5. 

(ii) (4(t*) = 1 +€sin (w*t* )  

This example deals with a cylinder fixed in a stream fluctuating with a frequency 
Cw* about a steady mean. The variation of the critical wall parameters with 
time is presented in figure 4 for E = 0.1, w* = 5.6 and gw = 0 or 0.5. It is evident 
from the figure that the skin-friction parameter responds more to the fluctuations 
in the free-stream velocity than the heat-transfer parameter. As the present 
solution is different from that of Gribben (1971) (the reasons were mentioned 
earlier), it  was not possible to compare the present results for high frequency with 
those obtained by Gribben (1971) using the method of series expansion. 

6.  Concluding remarks 
The flow in unsteady laminar compressible boundary layers in the immediate 

neighbourhood of a two-dimensional stagnation point due to an incident stream 
with an unsteady velocity has been investigated by applying an accurate 
numerical method developed by Marvin & Sheaffer ( I  969) for solving non-similar 
boundary-layer equations. The semi-similar boundary-layer equations, involving 
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both time and the independent similarity variable, have been solved by con- 
verting them into a matrix equation with the help of approximate implicit 
finite-difference expressions after transforming the governing conservation 
equations to new co-ordinates with a finite domain. Initial values of the dependent 
variables required for solving the unsteady flow equations were obtained by 
applying the same method to the steady equations. 

The method presented here could be used to study unsteady laminar boundary 
layers in compressible stagnation-point flow with an arbitrary free-stream 
velocity distribution. The method could also be employed to take into account 
variations with time of the density-viscosity product, Prandtl number, suction 
or injection at the surface or the surface temperature, provided that they were 
given a priori as functions of time. 

Finally, the present study illustrates the advantages of mapping infinite 
intervals into finite ones and applying the appropriate implicit finite-difference 
schemes when handling flow problems of a complex nature, such as non-similar 
and semi-similar flows. 

One of the authors (C.S.V.) wishes to thank the Council of Scientific and 
Industrial Research, New Delhi, and the Indian Institute of Science, Bangalore, 
for financial assistance. 
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